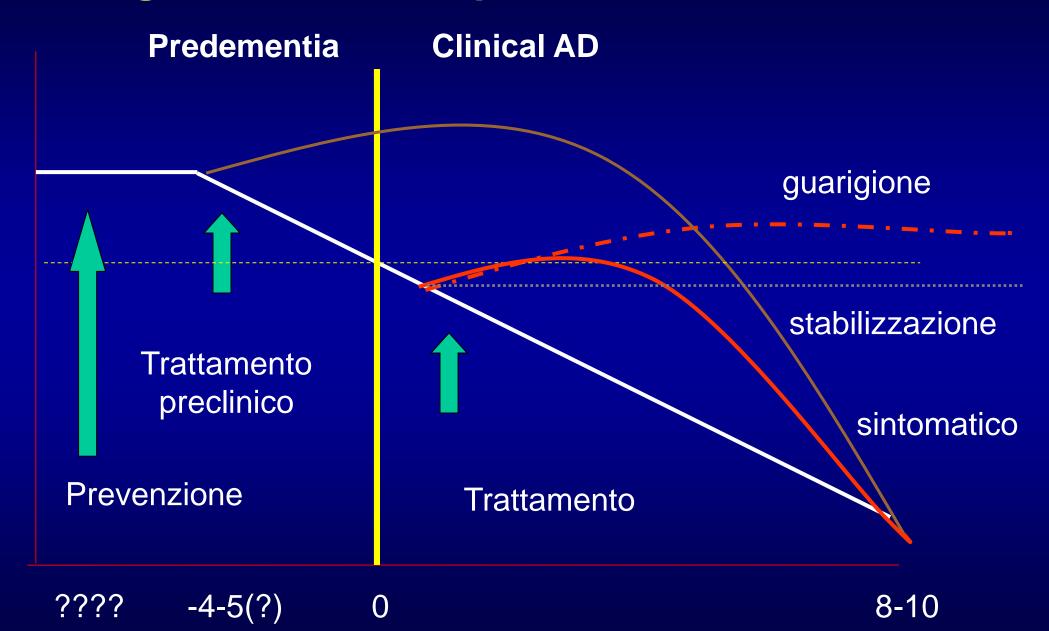


DEMENZE, DISTRETTO E TERRITORIO Costruiamo le alleanze


Taranto, Cittadella della Carità
26 Febbraio 2016

Update sul trattamento farmacologico e nutraceutico

Francesco Panza

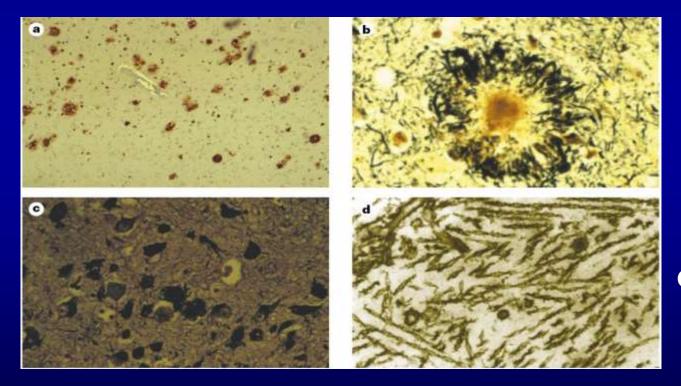
Dipartimento Scienze Mediche di Base, Neuroscienze e Organi di Senso,
Università degli Studi di Bari "Aldo Moro"
Dipartimento di Neurologia Clinicizzato U.O. Malattie Neurodegenerative,
Ospedale "Card. G. Panico", Tricase, Lecce

Strategie di intervento per la malattia di Alzheimer

REVIEW ARTICLES

Beyond the neurotransmitter-focused approach

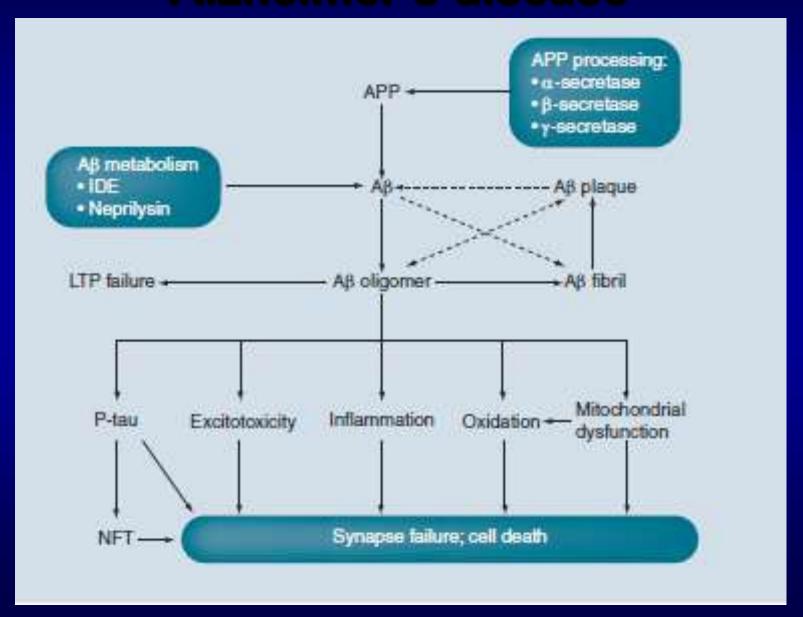
β-amyloid

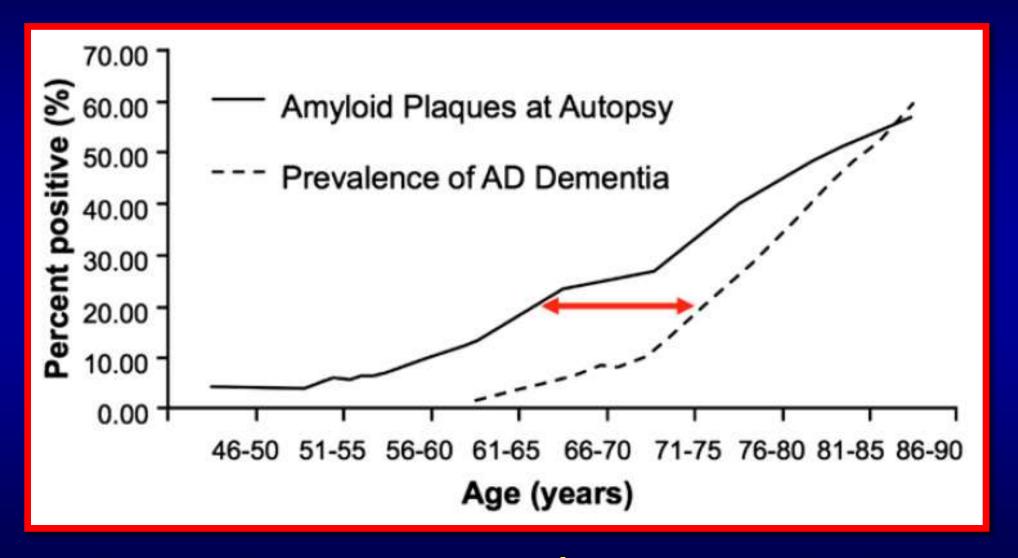

Tau protein

imbo², Cristiano Capurso³, emiale³,4, Antonio Capurso¹

Development Department, Chiesi Farmaceutici, Parma, ³Department of Geriatrics, University of Foggia, Foggia, ⁴Internal Medicine Unit, IRCCS Casa Sollievo dalla Sofferenza, San Giovanni Rotondo, Foggia, ⁵Geriatric Unit and Gerontology-Geriatric Research Laboratory, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy

Conoscere la patogenesi molecolare

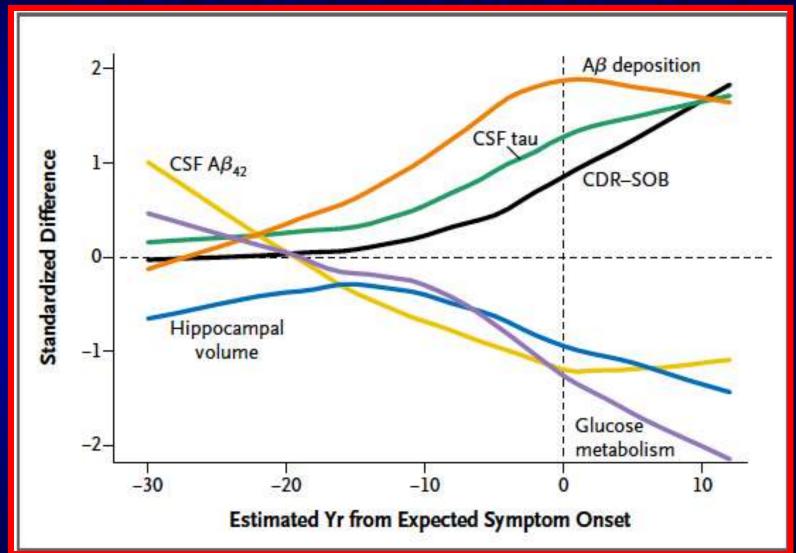

 La comprensione dei meccanismi molecolari di patogenesi e' strumentale per comprendere le basi molecolari della terapia


Placche senili: Aß

Grovigli neurofibrillari: τ

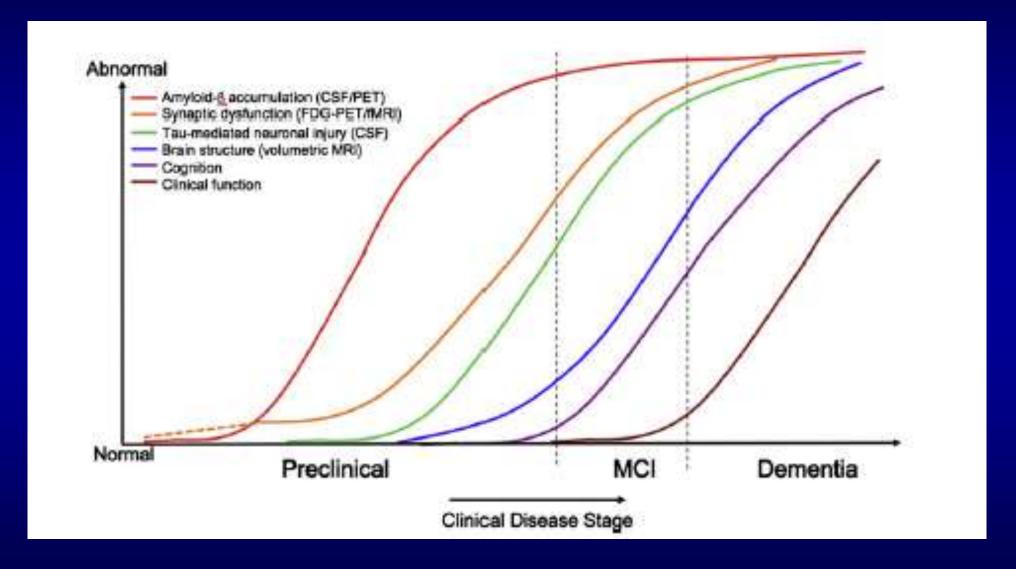
Pathological cascade of Alzheimer's disease

APPEARANCES OF PLAQUES VS DEMENTIA

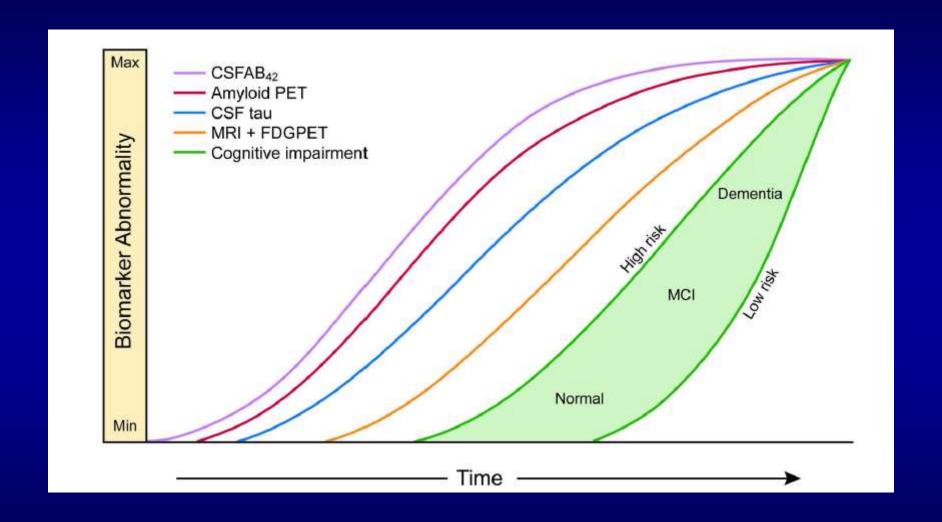

R.A. Sperling et al. / Alzheimer's & Dementia- (2011) 1-13

Current most-validated AD biomarkers

	Pathophysiological markers	Topographical markers
Cerebrospinal fluid		
Amyloid β _{ip}	Yes	No
Total tau, phospho-tau	Yes	No
PET		
Amyloid tracer uptake	Yes	No
Fluorodeaxyglucose	No	Yes
Structural MRI		
Medial temporal atrophy	No	Yes


Dubois et al. Lancet Neurol 2010; 9: 1118-27

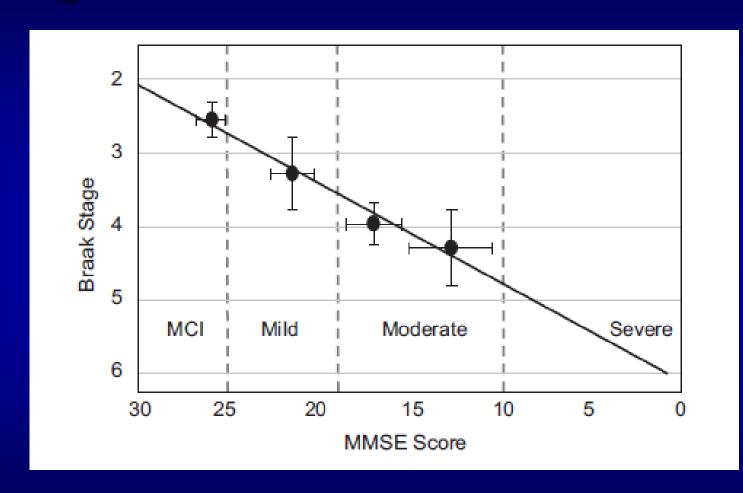
COMPARISON OF CLINICAL, COGNITIVE, STRUCTURAL, METABOLIC, AND BIOCHEMICAL CHANGES AS A FUNCTION OF ESTIMATED YEARS FROM EXPECTED SYMPTOM ONSET



Bateman RJ et al NEJM 2012;367;9

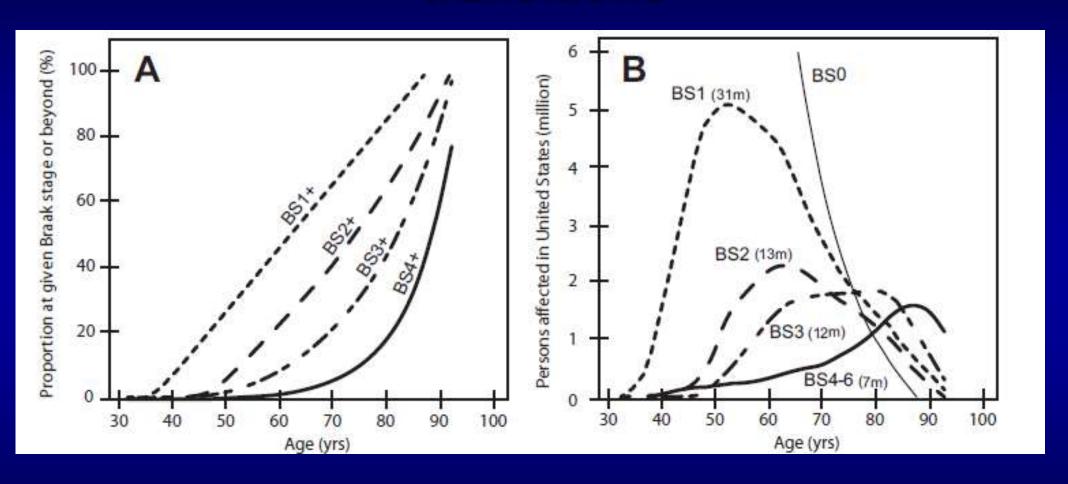
Model of dynamic biomarkers of AD

Revised model of dynamic biomarkers of AD

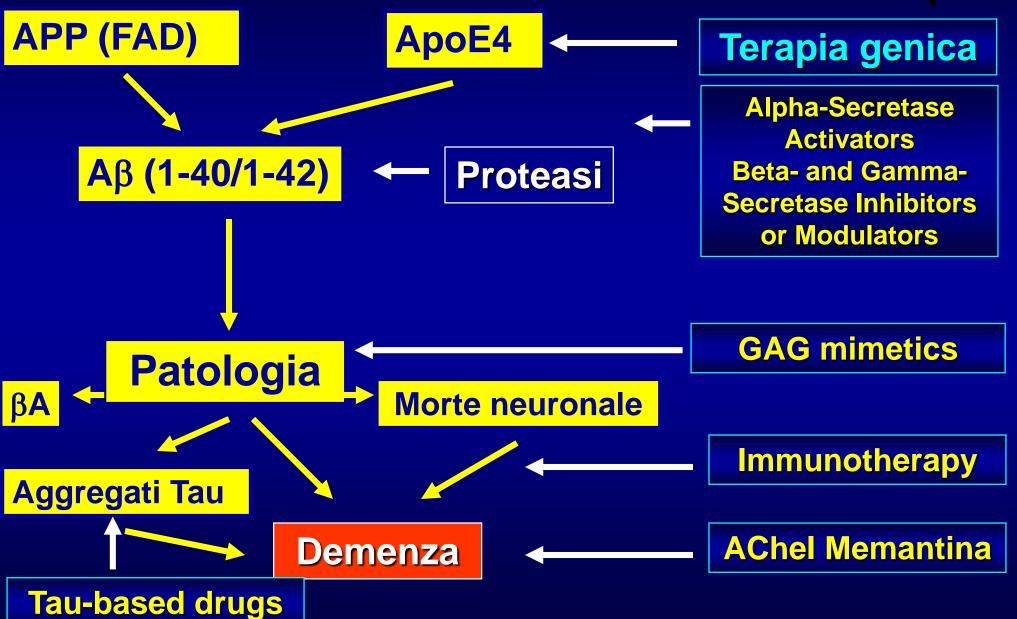

Lancet Neurol 2013;12:207-216

Braak staging correlation with cognitive decline

NFTs and NTs entorhinal cortex (stages I and II)


NFTs and NTs hippocampal areas (stages III and IV)

NFTs and NTs neocortical areas (stages V and VI)



Braak H, Braak E. Acta Neuropathol 1991;82:239–259

Age-specific probability of Braak stage (BS) transitions

RIDUZIONE DELLA CONCENTRAZIONE E DEPOSITO EXTRACELLULARE DELLA Aβ

Tau-based targets in AD

- 1)Inhibition of tau aggregation
- 2) Inhibition of tau phosphorylation (inhibiting tau kinases or activating tau phosphatases)
- 3) Increase of microtubule stabilization
- 4) Increase of tau clearance (immunotherapy)

Ongoing Phase I RCTs of tau-directed drugs in clinical development for AD treatment

Compound (Company) ClinicalTrials.gov Identifier	Mechanism of action	Estimated enrollment	Characteristics	Status
TPI-287 (University of California, San Francisco) NCT01966666	Microtubule- stabilizing agent	Thirty-three patients with mild to moderate AD (2013–2015)	The purpose of the study is to determine the highest dose of TPI-287 that is safe and tolerable when administered as an intravenous infusion	Phase I trial (currently recruiting)
AADvac1 (Axon Neuroscience SE) NCT01850238	Active tau-based immunotherapy	30 patients with mild to moderate AD (2013–2015)	Patients will receive 1 dose of AADvac1 per month over 3 months, for a total of three administrations	Phase I trial (completed)
AADvac1 (Axon Neuroscience SE) NCT02031198	Active tau-based immunotherapy	This follow-up study continues to observe patients who have completed the Phase I trial of AADvac1, for another 18 months (2014–2017)	Patients who have received six doses in the previous trial will be administered 1–2 booster doses of AADvac1 (two if their antibody titers decline below those achieved in the previous trial) Patients who have received three doses in the previous trial will be administered another three doses, and then vaccinated with booster doses as above	18-month follow-up Phase I trial (active, not recruiting)
ACI-35 (AC Immune AG)	Active tau-based immunotherapy	Patients with mild to moderate AD (2013–2014)	This Phase I trial compared two doses of ACI-35 to investigate its safety, tolerability, and immunogenicity	Phase I trial
RG7345 (RO6926496, MAb86) (Hoffmann-La Roche) NCT02281786	Passive tau-based immunotherapy	Forty-eight healthy subjects (January 2015–October 2015)	Single, ascending dose, intravenous administration	Phase I trial (active, not recruiting)

Seripa et al. Expert Rev Neurother 2016 [Epub ahead of print]

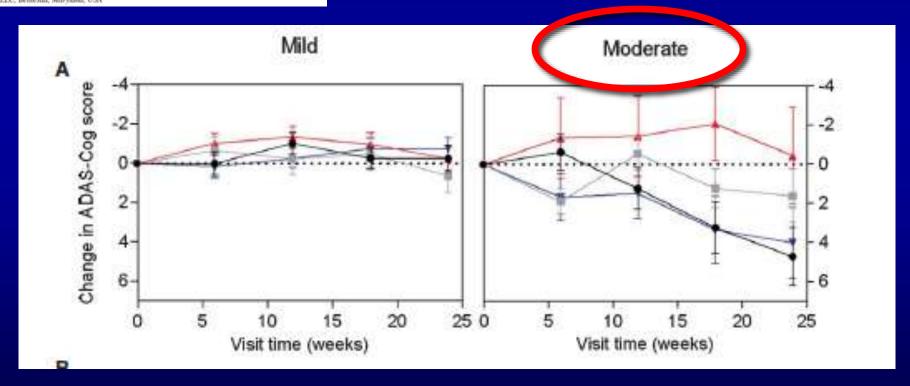
EDITORIAL

Tau aggregation inhibitors: the future of Alzheimer's pharmacotherapy?

REVIEW

Tau-directed approaches for the treatment of Alzheimer's disease: focus on leuco-methylthioninium

Davide Seripa^{a*}, Vincenzo Solfrizzi^b, Bruno P. Imbimbo^c, Antonio Daniele^d, Andrea Santamato^e, Madia Lozupone^f, Giovanni Zuliani^g, Antonio Greco^a, Giancarlo Logroscino^{f,b} and Francesco Panza^{a,f,b*}


"Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, Foggia, Italy; "Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy; "Research & Development Department, Chiesi Farmaceutici, Parma, Italy; densitute of Neurology, Catholic University of Sacred Heart, Rome, Italy; Physical Medicine and Rehabilitation Section, 'OORR' Hospital, University of Foggia, Foggia, Italy; Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy; Department of Medical Science, Section of Internal and Cardiopulmonary Medicine, University of Ferrara; Department of Clinical Research in Neurology, University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico', Tricase, Lecce, Italy

Short Communication

Tau Aggregation Inhibitor Therapy: An Exploratory Phase 2 Study in Mild or Moderate Alzheimer's Disease

Claude M, Wischik^{n,*}, Roger T, Staff^b, Damon J, Wischik^c, Peter Bentham^d, Alison D, Murray^c, John M.D. Storey^d, Karin A, Kook^g and Charles R, Harrington^a

^{*}Salamandra LLC, Bethesda, Maryland, USA

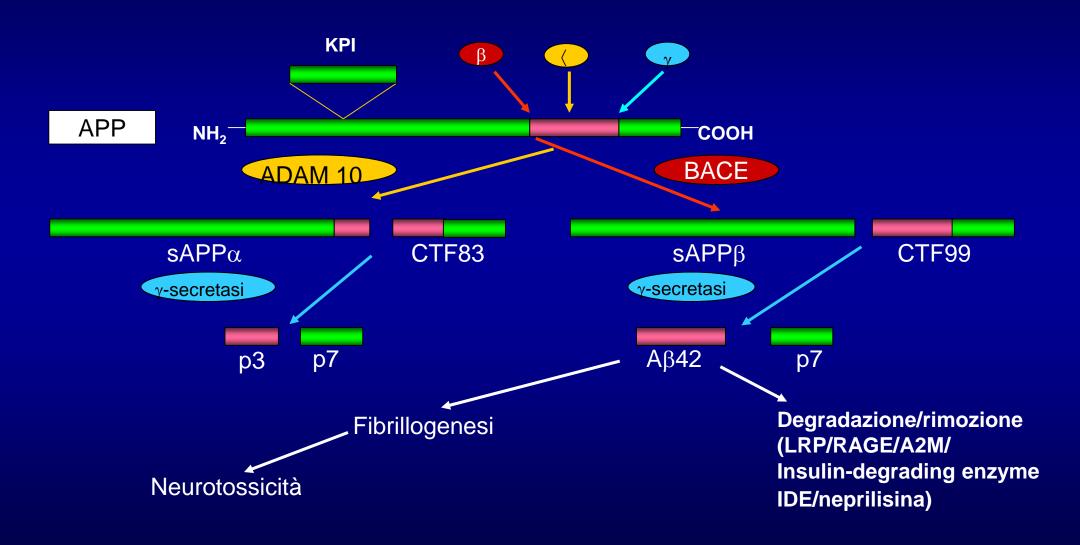
Wischick et al. J Alzheimers Dis 2015;44:705-20

^{*}School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK

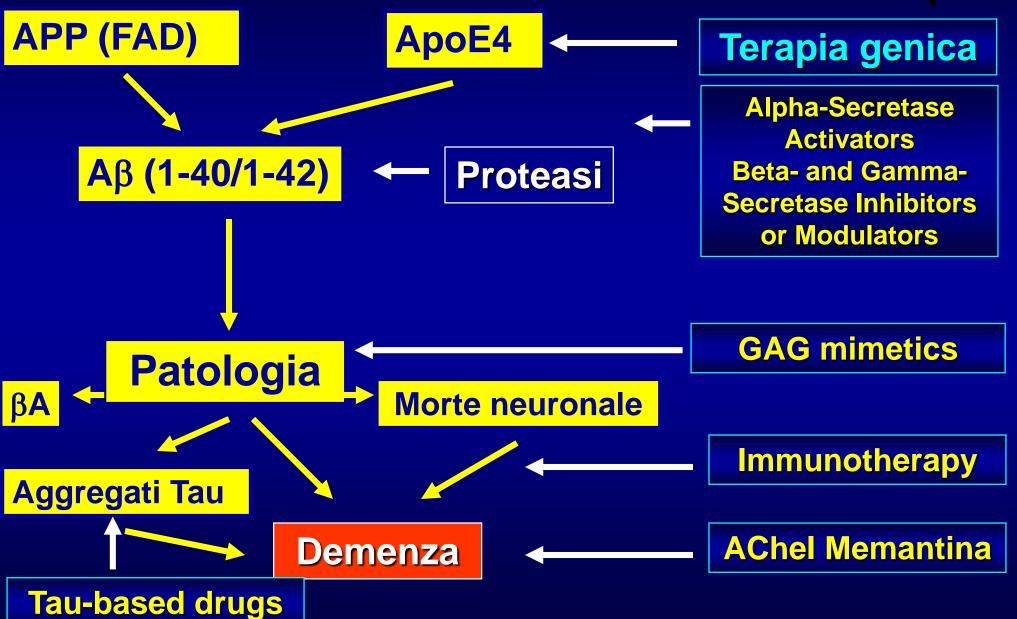
^{*}Aberdeen Royal Informary, NHS Grampian, Aberdeen, UK

^{*}Computer Science Department, University College London, UK

^aCollege of Medical and Dental Sciences, University of Birmingham, Birmingham, UK


^{*}Aberdeen Biomedical Imaging Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK

Department of Chemistry, University of Abenleen, Abenleen, UK


Phase II and III randomized controlled trials of TRx0237 (LMTX™) for the treatment of AD and frontotemporal dementia (FTD)

Compound (Company) Mechanism of ClinicalTrials.gov Identifier action				Status	
TRx0237 (LMTX™) (TauRx Therapeutics Ltd) NCT01626391	Tau aggregation inhibitor	Nine patients already taking medications for probable mild to moderate AD (2012–2013)	TRx0237 125 mg tablets administered twice daily for 4 weeks	Phase II trial (terminated)	
TRx0237 (LMTX™) (TauRx Therapeutics Ltd) NCT01689233	Tau aggregation inhibitor	700 patients with probable mild AD (2012–2015)	TRx0237 100 mg tablets administered twice daily	Phase III trial (active not recruiting)	
TRx0237 (LMTX™) (TauRx Therapeutics Ltd) NCT01689246	Tau aggregation inhibitor	A total of 833 patients with probable mild to moderate AD (2013–2016)	TRx0237 75 and 125 mg tablets administered twice daily	Phase III trial (active not recruiting)	
TRx0237 (LMTX™) (TauRx Therapeutics Ltd) NCT01626378	Tau aggregation inhibitor	A total of 220 patients with the behavioral variant of FTD (2013–2016)	TRx0237 100 mg tablet administered twice daily	Phase III trial (active not recruiting)	
TRx0237 (LMTX™) (TauRx Therapeutics Ltd) NCT02245568	Tau aggregation inhibitor	Subjects who have completed participation in a Phase II or Phase III trial with TRx0237 continued access to therapy to evaluate the long-term safety of TRx0237 (2014–2017)	All subjects will initially be given TRx0237 100 mg tablets administered twice daily. Thereafter, dosing is flexible (100 mg tablets administered twice or thrice daily)	Open-label Phase III trial (currently recruiting)	

Aspetti fisiopatologici del metabolismo della APP

RIDUZIONE DELLA CONCENTRAZIONE E DEPOSITO EXTRACELLULARE DELLA Aβ

AD treatment: recent therapeutic approaches in Phase II or III

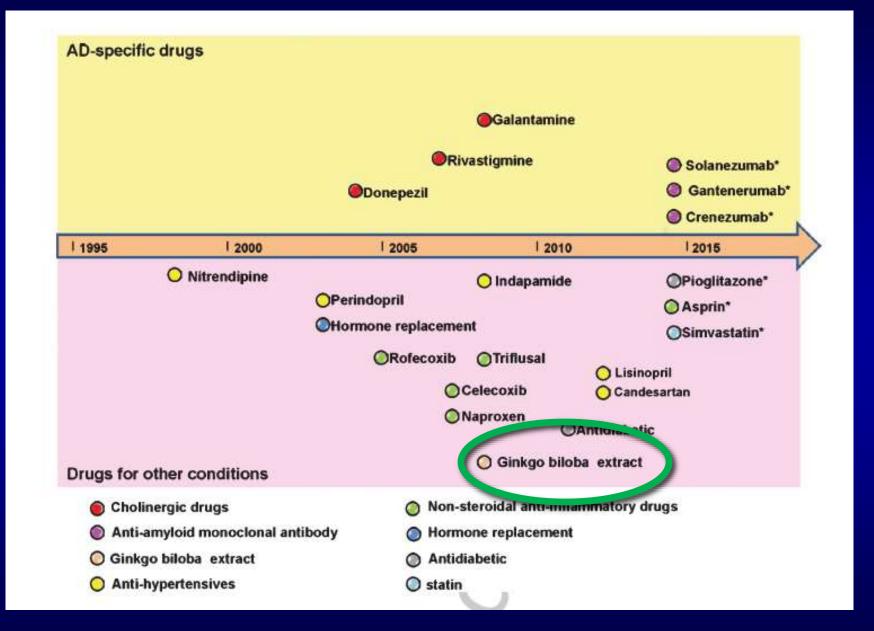
Main mechanism of action	RCTs completed (examples)	RCTs ongoing (examples)
Anti-amyloid: ↓Aβ product	ion	16
β-secretase inhibitors	Development limited by difficulties in identifying molecules able to cross the BBB and safety issues. Thiazolidinediones: rosiglitazone, tested in three phase 3 RCTs in mild-moderate AD (up to 1 year, ≈ 3800 participants); and pioglitazone, phase 2 RCT in mild-moderate AD, no benefits [136]	Pioglitazone: phase 2 RCT in MCI (6 months, ≈ 300 participants) New compounds with increased ability to pass the BBB tested: Wi-8931: Phase 2/3 RCT in mild-moderate AD (18 months, pass) participants.
γ-secretase modulators (GSMs)	Tarenflurbil: negative phase 3 RCT (≈1684 participants, 18 months; another RCT in 900 subjects interrupted) in mild AD [86]. New compounds (e.g. CHF 5074, EVP-0962) are under development	EVP-0962: phase 2 RCT in he tithy subjects, MCI and early AD cases (14 days, \approx 50 pay cipants)
γ-secretase inhibitors (GSIs)	GSI: development hampered by safety issues (i.e. interference with Notch signalling). Notch-sparing GSI under development Semagacestat: failures of phase 3 RCTs in 2600 participants with mild-moderate AD, halted because of lack of efficacy and adverse events, including † skin cancer risk and infections [88]	
	Avagacestat: a 6-month, phase 2 RCT in 209 patients with mild-moderate AD: † adverse events for high dosages, pharmacodynamics poorly characterized, no significant effects on CSF/MRI markers [89]	Avagacestat: phase 2 in prodromal AD, 2 years, 270 participants; arms with higher doses already discontinued due to the second of the second o
α-secretase activators	Etazolate: † \alpha-secretase activity and modulates GABA-A receptors, 3 months, phase 2 RCT in 159 cases of mild-moderate AD, reported acceptable safety and tolerability [137]	Epigallocatechin gallate: $\uparrow \alpha$ -se retase activity and $\downarrow A\beta$ aggregation, Phase 2/3 RO in early AD, 18 months, ≈ 50 paraco

AD treatment: recent therapeutic approaches in Phase II or III

Main mechanism of action	RCTs completed (exam, 'es)	RCT's ongoing (examp.
Anti-amyloid: ↓Aβ aggregation or oligomerization	Tramiprosate: negative phase RCT in 1052 cases of m d-moderate AD, 18 months (138]. Another phase 3 RCT (930 whiects intermy to based on the latter results PBT2: negative 12-week phase 2 RCT, 78 participants with mild AD with positive secondary outcome [139] Scyllo-inositol: 18 months, phase 2 RCT in 353 cases of mild -moderate AD, showed no evidence of clinical benefits, and with high doses stopped because of unexpected death and infections [87]	PBT2: phase 2 trial in 40 patients with prodromal or mild AD and PiB-PET positive treated for 12 months, PiB-PET as rimary outcome and RN12611001008910)
Anti-amyloid: †Aβ clearance, active immunotherapy	Vaccines: contain different Aβ-derived epitopes with arious adjuvants and mechanisms of delivery (e.g. adenovirus. DNA vaccine, single-chain antibody fragments) AN1792: first anti-Aβ vaccine tested in a 12-month, phase 2 trial of 372 patients with mild-moderate AD, stopped because of a patients with mild and patients and Cytos): a phase 2, 12-month RCT tolus 16-month open-label extension), 120 subjects with mild not, at a safety, tolerability and antibody response [140]	ACI-24: a phase 1/2 12- nonth RCT to evaluate safety and efficacy in ≈ 186 per ents with mild-moderate AD
	Affitopes: short peptides mimicking native Aβ. AD02 and AD03 in phase 1 in mild-moderate AD, ≈76 individuals, 12 months [141] ACC-001: two phase 2 RCTs in ≈520 subjects with early or mild-moderate and prodromal AD over 24 months (results unpublished)	AD02 (Affiris/GSK): Phase 2 ReT in 300 individuals with early AD (18 months); additionally, extended follow-up of studies are parted in the phase I RCT is ongoing (total follow-up of 2 years) AD03 (Affiris): an RCT is ongoing to follow-up subjects who participated in the phase I RCT

Compound Company/institution ClinicalTrials.gov Identifier	Binding characteristics	Estimated or completed enrollment	Characteristics	Status	Ref.
Monoclonal antibodies					
Solanezumab (LY2062430)	Humanized monodonal lgG1 anti-A $β_{1-42}$ antibody (A $β_{13-28}$), binding soluble A $β$				
Eli Lilly NCT01127633 (EXPEDITION EXT)		1275 patients (2010–2016)	400 mg administered once every 4 weeks by intravenous infusion for 100 weeks	Phase III trial (ongoing, but not recruiting)	[101]
Eli Lilly NCT01900665 (EXPEDITION3)		2100 patients (2013–2016)	400 mg administered once every 4 weeks by intravenous infusion for 18 months	Phase III trial (currently recruiting)	[103]
Gantenerumab (RO4909832)	Fully human monodonal IgG1 antibody against Aβ ₁₋₄₂ (Aβ ₂₋₄₋₂ against Aβ ₁₋₄₂				
Hoffman w roche 101224106 (SCarlet RoAD trial)	not binding soluble Aβ	770 patients with prodromal AD (2010–2016)	Subcutaneous multiple doses	Phase in the (currently recruiting)	[115]
Solanezumab (LY2062430) Gantenerumab (RO4909832) Washington University School of Medicine Eii Lilly Hoffmann-La Roche Alzheimer's Association National Institute on Aging (NIA) Avid Radiopharmaceuticals NCT01760005 (DIAN TU)		210 patients (2012–2016)	Solanezumab: 400 mg intravenous infusion every 4 weeks Gantenerumab: 225 mg subcutaneously every 4 weeks	Phase II/III trial (currently recruiting)	[102]
Ch. Szumab (MABT510. Genentech NCT01723826	Humanized monodonal IgG4 antibody against $A\beta_{1-42}$ ($A\beta_{12-23}$)	400 patients (2012–2016)	Patients who completed the Phase II study ABE4869g or ABE4955g	Phase II trial (current)	[126]

Efficacy and safety studies of gantenerumab in patients with Alzheimer's disease


Expert Rev. Neurother. Early online, 1-14 (2014)

Francesco Panza*¹⁻³, Vincenzo Solfrizzi⁴, Bruno P Imbimbo⁵, Michele Giannini⁴, Andrea Santamato⁶, Davide Seripa³ and Giancarlo Logroscino^{1,2}

¹Department of Basic Medicine, Neuroscience, and Sense Organs, Neurodegenerative Disease Unit, University of Bari Aldo Moro, Bari, Italy ²Department of Clinical Research in Neurology, University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico', Tricase, Lecce, Italy ³Geriatric Unit and Laboratory of Among active and passive anti- β -amyloid (A β) immunotherapies for Alzheimer's disease (AD), bapineuzumab and solanezumab, two humanized monoclonal antibodies, failed to show significant clinical benefits in mild-to-moderate AD patients in large Phase III clinical trials. Another ongoing Phase III trial of solanezumab aims to confirm positive findings in mild AD patients. Gantenerumab is the first fully human anti-A β monoclonal antibody directed to both N-terminal and central regions of A β . A 6-month PET study in 16 AD patients showed that gantenerumab treatment dose-dependently reduced brain A β deposition, possibly stimulating microglial-mediated phagocytosis. Two ongoing Phase III trials of gantenerumab in patients with prodromal or mild dementia due to AD will determine if any reduction in brain A β levels will translate into clinical benefits. An ongoing secondary prevention trial of gantenerumab in presymptomatic subjects with genetic mutations for autosomal-dominant AD will verify the utility of anti-A β monoclonal antibodies as prevention therapy.

Keyworps: Alzheimer's disease • cognitive disorder • dementia • gantenerumab • monoclonal antibody • passive immunotherapy • solanezumab

Pharmacological Interventions in AD Prevention Trials

Wang et al. J Alzheimers Dis 2016 [Epub ahead of print]

Pharmacological Interventions in AD Prevention Trials

Studies	Sample size	Including criteria	Age at enrollment	Intervention	Duration	Outc	omes
						Primary	Secondary
AD-specija (r API [24]	300	Members of families with early-onset AD; no cognitive impairment; Carriers of a mutated PS1 gene, non-carriers will also be included to ensure double-blinding of the	≥30 years	Anti-amyloid monoclonal antibody: crenezumab	5 years, (interim analysis at 2 years)	cognition	Change in AD biomarkers;
DIAN [24]	240	genetic status Members of families with early-onset AD; subjects can be asymptomatic or have very mild memory and cognitive problems including mild dementia; carriers of mutation in PS1, PS2, or AβPP, non-carriers will also be included to ensure double-blinding of the genetic status	18–80 years	Two anti-amyloid therapies:the anti-amyloid monoclonal antibodies: gantenerumab and solanezumab	2 years + 3-year extended follow-up	Initial phase (2 years): change in AD biomarkers; Follow-up phase (3 years): cognition	
ADCS-A4 [24]	1000	No cognitive impairment; evidence of brain amyloid accumulation (PET); subjects with no evidence of amyloid burden will also be included	65–85 years	Anti-amyloid monoclonal antibody: solanezumab	3 years + 2-year extended follow-up	cognition	Changes in AD biomarkers
Other pharmac						4 (
TOMMORROW [48] NCT01931566		No cognitive impairment; subjects at risk of developing MCI due to AD within 5 years. The risk stratification is based on an algorithm including age and TOMM40 and APOE genotype	65–83 years	Pioglitazone	5 years	Time to onset of MCI due to AD	Cognitive decline

Pharmacological Interventions in AD Prevention Trials

o.:		// //		(Commea)			
KEEPS-Cog [49]	720	perimenopausal and recently- postmenopausal women	42–58 years	Conjugated equine estrogens + progesterone or transdermal estradiol + oral progesterone	4 years	Change in cognition and mood	(2)
ASPREE [50]	19000	free of dementia, disability and cardiovascular disease	≥65 or 70 years	Aspirin	5 years	Composite endpoint (including Incident dementia)	Composite endpoint (including Incident dementia)
SIMaMCI NCT00842920	520	Amnestic MCI, high cholesterol level	55–90 years	Simvastatin	2 years	Change in cognition (CDR-SB)	Change in cognition; time to conversion to AD
SimBio NCT01142336	120	Cognitively normal	45–64 years	Simvastatin	1 year	Changes in AD biomarkers in CSF	Measures of inflammation and oxidative stress in CSF
SHARP NCT00939822	90	Family AD history	45–65 years	Simvastatin	18 months	Changes in CSF Aβ levels	

Amyloid-based immunotherapy for Alzheimer's disease in the time of prevention trials: the way forward

Expert Rev. Clin. Immunol. Early online, 1-15 (2014)

Francesco Panza*^{1,2}, Vincenzo Solfrizzi⁵, Bruno P Imbimbo³, Rosanna Tortelli^{1,2}, Andrea Santamato⁴ and Giancarlo Logroscino^{1,2}

¹Department of Basic Medicine, Neuroscience, and Sense Organs, Neurodegenerative Disease Unit, University of Bari Aldo Moro, Bari, Italy ²Department of Clinical Research in Neurology, University of Bari Aldo Moro, "Pa Fondazione Cardinale G. Panico", Tricase, Lecce, Italy ³Research & Development Department, Both active and passive anti- β -amyloid (A β) immunotherapies for the treatment of Alzheimer's disease (AD) have demonstrated dearance of brain A β deposits. Among passive immunotherapeutics, two Phase III dinical trials in mild-to-moderate AD patients with bapineuzumab, a humanized monoclonal antibody directed at the N-terminal sequence of A β , were disappointing. Also solanezumab, directed at the mid-region of A β , failed in two Phase III trials in mild-to-moderate AD. Another Phase III trial with solanezumab is ongoing in mildly affected AD patients based on encouraging results in this subgroup. Second-generation active A β vaccines (CAD106, ACC-001, and Affitope AD02) and new passive anti-A β immunotherapies (gantenerumab and crenezumab) have been developed and are under clinical testing. These new anti-A β immunotherapies are being tested in prodromal AD, in presymptomatic subjects with AD-related mutations, or in asymptomatic subjects at risk of developing AD. These primary and secondary prevention trials will definitely test the A β cascade hypothesis of AD.

Keywords: active immunotherapy • Alzheimer's disease • cognitive disorders • dementia • gantenerumab • monoclonal antibody • passive immunotherapy • solanezumab

Upcoming trials for preventive immunotherapies

Name	Drug Used vs. Place	bo	Patient Group	Trial Start Date	Responsible Party
Dominantly Inherited Alzheimer Network (DIAN)	Use of three different dugs: gantenerumab * solanezumab *, beta- secretase (BACE) inhibitor	(c	Families with carriers for autosomal dominant Alzheimer's disease	Early 2013	Washington University School of Medicine
Treatment of Asymptomatic Alzheimer (A4)	Solanezumab*		Clinically older individuals with amyloid positive PET scan	Mid 2013	Harvard Medical School and Brigham and Women's Hospital, Boston, MA
Alzheimer Prevention Initiative (API)	Crenezumab*		cognitively healthy individuals who are cariers for genes causing familial Alzheimer's disease	Early 2013	Banner Alzheimer's Institute, Phoenix, AZ

Discov Med 2013; 15: 319-326

Multi-domain Interventions in AD Prevention Trials

Concurrent management of risk factors based on lifestyle changes and marketed pharmacological products

- 1) The Finnish Geriatric Intervention Study to Prevent Cognitive impairment and Disability (FINGER)
- 2) Multi-domain Alzheimer Prevention Study (MAPT)
- 3) Prevention of Dementia by Intensive Vascular Care (PreDIVA)

The Finnish Geriatric Intervention Study to Prevent Cognitive impairment and Disability (FINGER)

A 2-year multi-domain intervention (diet, exercise, cognitive training, vascular risk monitoring) or a control group (general health advice)

This multidomain intervention could improve or maintain cognitive functioning in at-risk older people from the general population (between-group difference in the change of NTB total score per year was: 0-022, 95% CI 0-002-0-042, p=0-030)

Nutraceutical and bioactive compounds with published studies

Name of nutraceutical formula	Institution	Active ingredient	Clinical trials batteries
AXONA AC-1200® [12]	Nestlé	Caprilic acid	ADAS-Cog
Perceptiv [®] [76]	Sevo Nutraceuticals	 3-deaza-adenosine Acetyl-L-cysteine S-adenosylmethionine 	CVLTII
Cognitex® [77]	LifeExtension	 Phosphatidyl serine 	- Rev Auditory Verbal Learning Test
		– Omega 3	- Computerized Cognitive D. Test
Description [83]		3,4,5-trihydroxystilbene	In preclinical trials (both in vitro and in vivo)
Ginkgo Biloba [69, 70]	Ipsen, Boulogne, France.	Ginkgo extract EGb761	Conversion to AD
	(GuidAge) US National Institutes of Health (GEM)		 GuidAge: MMSE, CDR, FCSRT, TMT, verbal fluency, visual analogue scales, instrumental activities of daily living, geriatric depression scale. GEM: MMSE, CDR, or ADAS-Cog. GEM Study Neuropsychological Battery in contraction.
			deterioration.
Brain – Up10 [®] [61]	Neuroinnovation	 Complex B vitamins 	- MMSE
		 Andean Compound 	- Boston naming test
		(Shilajit andino)	- ADAS-Cog
			- TMT-A
			- NPI-12
			- GDS
Souvenaid® [84]	Nutricia	- Uridine monophosphate	- WMS-r
		- Phospholipid	- ADAS-Cog
		 Choline and omega-3 fatty acids 	- MMSE
		 Vitamins antioxidants 	

ADAS-Cog, Alzheimer's Disease Assessment Scale-cognitive subscale; CVLTII, California Verbal Learning Test II; MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating; FCSRT, The Free and Cued Selective Reminding Test, TMT-A, Trail-making Test A; NPI, Neuropsychological Inventory; GDS, Global Deterioration Scale; WMS-r, Wechsler Memory Scale-Revised; GEM, Ginkgo Evaluation of Memory trial.

Journal of Alzheimer's Disease 42 (2014) 357-367

Commentary

- Plant-Based Nutraceutical Interventions
- against Cognitive Impairment and Dementia:
- Meta-Analytic Evidence of Efficacy of a
- Standardized Gingko biloba Extract
- Vincenzo Solfrizzia, b,c,d,1,* and Francesco Panza,b,c,d,1,*
- ^aGeriatric Medicine-Memory Unit and Rare Diseases Centre, University of Bari Aldo Moro, Bari, Italy
- bNeurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of
- Bari Aldo Moro, Bari, Italy
- ^cDepartment of Clinical Research in Neurology of the University of Bari Aldo Moro at "Pia Fondazione Card G.
- Panico", Tricase, Lecce, Italy
- dGeriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Foggia, Italy

Principal nutraceuticals and bioactive compounds for the treatment of AD and late-life cognitive disorders

Groups	Subgroups	Molecules	6.
Antioxidant vitamins	1000	Vitamins A, C, and E	1
riomocysteme with vitamins		Vitamins B6, B12, and B9	
Flavonoids	Flavanols	Catechin, epicatechin, epigallocathechin, and	epigallocatechingallate (EGCG)
	Flavonols	Quercetin and kaempferol	**************************************
	Flavones	Luteolin and apigenin	
	Isoflavones	Daidzein and genistein	
	Flavanones	Esperetin and naringenin	
	Anthocyanidins	Pelargonidin, cyanidine, and malvidin	
Non-flavonoid polyphenols	and a suppose to the continuous	Resveratrol and curcumin	
Control		Lutein, lycopene, and β-carotene	
Diterpenes		Carnosic acid and rosmarinic acid	

Gingko biloba properties for treating symptoms of dementia

Flavonoids (e.g., quercetin and ginkgetin)

Pro- coagulant and pro-inflammatory properties, possibly vasodilatory and antioxidant properties in the central nervous system

Diterpene ginkgolides A, B, and C

Improved peripheral and cerebral blood flow, with also anti-inflammatory and antioxidant properties

Sesquiterpene ginkgolide bilobalide

Antioxidant activity, promoting expression of growth factors

Gb may influence different neurotransmitter systems

Inhibition of monoamine oxidase A and uptake of norepinephrine

Increased synaptosomal uptake of 5-hydroxytryptamine and extracellular levels of dopamine and noradrenaline

Solfrizzi and Panza. J Alzheimers Dis 2015;43:605-611

Standardized Gingko biloba extract: *EGb 761*

24% of flavonol glycosides

Quercetin, kaempferol, and isorhamnetin derivatives

6% of terpenes

Divided into diterpenes (ginkgolides) and sesquiterpenes (bilobalide)

Standardized Gingko biloba extract: *EGb 761*

Repeated administration of 600 mg/kg of EGb 761 for 8 days led to 4.5-fold, 11.5-fold, and 10-fold increases in plasma concentration of quercetin, kaempferol, and isorhamnetin

In animal AD models, EGb 761 demonstrated a protective effect against A β 1-42-induced dysfunction and death of hippocampal neurons, inhibiting A β aggregation, and enhancing also neurogenesis

Solfrizzi and Panza. J Alzheimers Dis 2015;43:605-611

COCHRANE META-ANALYSES 2002-2007-2009

Gingko biloba for cognitive impairment and dementia

Evidence of improvement of clinical global change, functional status, and cognition on 33 pooled RCTs with daily dose ranged from 80 to 600 mg/day, usually less than 200 mg/day, and treatment periods ranging from 3 to 52 weeks

Birks J et al (2002) Cochrane Database Syst Rev 4, CD003120

Pooled data on 35 RCTs (total participants = 4247), although only 29 studies contributed data to the meta-analyses, showed benefits associated with EGb 761 in subjects with cognitive impairment and dementia for clinical global change (dose greater than 200 mg/day) at 24 weeks, for cognition at any dose but only at 12 weeks, and for functional status at 12 weeks and 24 weeks but only with a dose less than 200 mg/day

Birks J et al (2007) Cochrane Database Syst Rev 2, CD003120

Pooled data on 36 RCTs suggested inconsistent results of EGb 761 for cognition, functional status, mood, depression and caregiver burden in subjects with cognitive impairment and dementia

A subgroup analysis of this last Cochrane meta-analysis including only AD patients (925 patients from 9 trials) also showed no consistent pattern of any benefit associated with Gb extracts

Birks J et al (2009) Cochrane Database Syst Rev 1, CD003120

PREVENTIVE TRIALS WITH EGb 761

The Ginkgo Evaluation of Memory (GEM) The GuidAge Trial

The Ginkgo Evaluation of Memory (GEM)

In 3,069 participants with a follow-up of 6.1 years, EGb 761, at a dose of 120 mg twice a day, did not reduce the incidence of AD in healthy individuals and those suffering from Mild Cognitive Impairment (MCI)

DeKosky et al; GEM Study Investigators (2008) JAMA 300, 2253-2262

The GuidAge Trial

In 2,854 participants aged 70 years and older in the GuidAge trial, EGb 761 did not decrease the AD risk over 5 years in subjects with a memory complaint who might be mildly cognitively impaired

TRIALS WITH EGb 761 IN DEMENTED PATIENTS WITH NEUROPSYCHIATRIC SYMPTOMS (NPS)

EGb 761 IN DEMENTED PATIENTS WITH NPS

The regulatory trial of Schneider and colleagues led to the hypothesis that AD patients with NPS may decline more rapidly than average and would benefit more from EGb761

Schneider et al. Curr Alzheimer Res 2, 541–551

Three recently performed RCTs showed a beneficial effect of a dose of 240 mg/day of EGb761 in dementia, AD, and MCI patients accompanied by NPS

Int J Geriatr Psychiatry 2011; 26: 1186-1194

Int J Geriatr Psychiatry 2014; doi: 10.1002/gps.4103

J Psychiatr Res 2012; 46: 716-723

Efficacy and Adverse Effects of Ginkgo Biloba for Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis

Meng-Shan Tan^a, Jin-Tai Yu^{a,b,c,d,*}, Chen-Chen Tan^b, Hui-Fu Wang^c, Xiang-Fei Meng^b, Chong Wang^b, Teng Jiang^c, Xi-Chen Zhu^c and Lan Tan^{a,b,c,*}

Handling Associate Editor: Francesco Panza

^aDepartment of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, China

^bDepartment of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China

^cDepartment of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, China

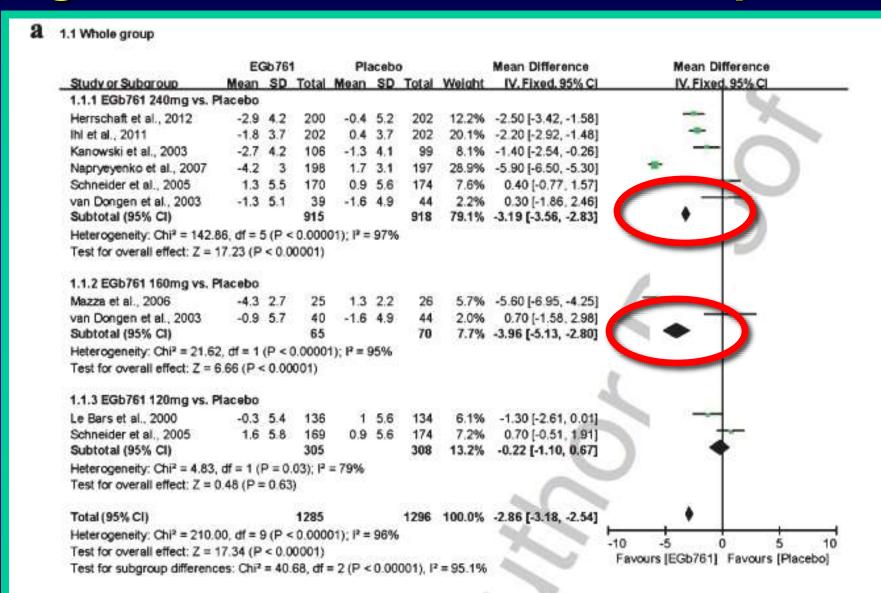
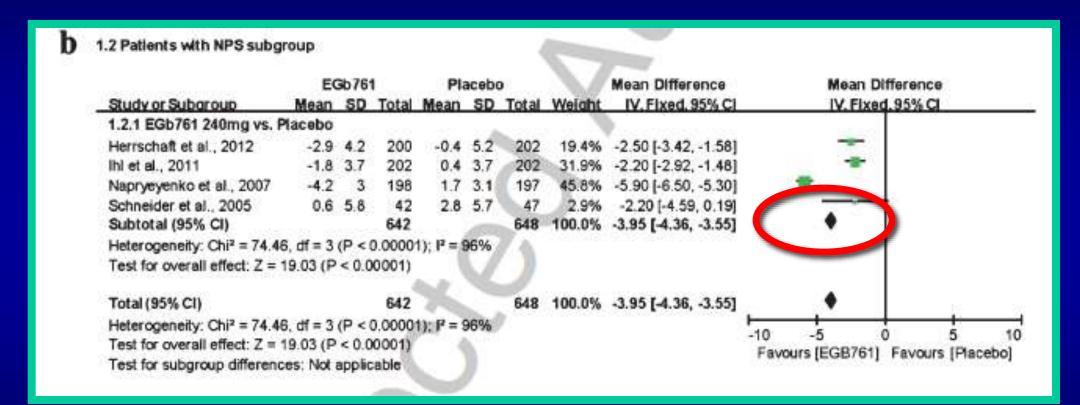
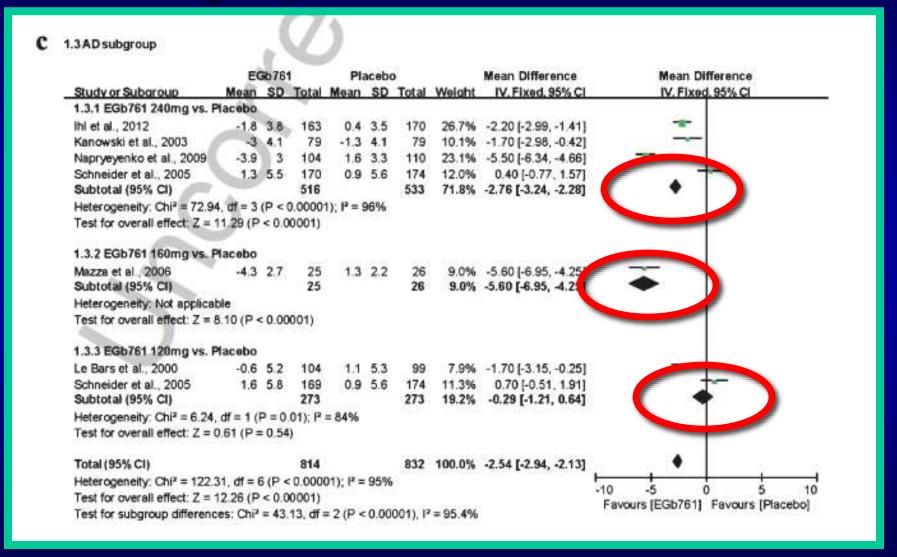

dMemory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA

Table 1
Summary of ginkgo biloba EGb761 trials in patient with dementia and cognitive impairment


Study	Criteria	Patients	Groups (n)	-	(% men)		Baseline I MMSE (SD) (Duration	02073700770				Dropout
								(weeks)	Cognition	Function	Behavio	or Global	- rate (%) d
Kanowski et al.,	DSM-III-R	AD or VaD	240 mg daily (106)	72 (10)	32	Mild to moderate	21.6 (2.6)	24	SKT ADAS-cog	NAB	-	CGI	25.5
[41,51]		11	Placebo (99)	72 (10)	29		21.5 (2.4)						22.2
T. CO. C. T.	- (Only AD	240 mg daily (79)	72 (10)	29	Mild to moderate	21.5 (2.3)	24	SKT ADAS-cog	NAB	-	CGI	-
		11	Placebo (79)	72 (10)	27		21.6 (2.7)						=
Le Bars et al.,	DSM-III-R	AD or VaD	120 mg daily (155)	69 (10)		Mild to severe	21.1 (5.8)	26	ADAS-cog	GERRI	_	CGIC	21.3
[40]	ICD-10		Pfacebo (154)	69 (10)	44		21.2 (5.5)		-1400000000				20.8
		Only AD	120 mg daily (120)	68 (10)	46	Mild to severe	21.1 (5.9)	26	ADAS-cog	GERRI	-	CGIC	_
			Placebo (116)	68 (11)	38		21.3 (5.6)		50000 ETE				
Mazza et al.,	DSM-IV	AD	160 mg daily (25)	66.2(6)	48	Mild to moderate	18.8 (3.6)	24	SKT	-	-	CGI	20.0
[42]			Placebo (26)	69.8 (3)	39		18.8 (3.6)		MMSE				23.1
van Dongen et al.,	DSM-III-R	AD or VaD	160/240 mg daily (7	9) 82,6 (5:1)	.14	Mild to moderate	18.0 (4.9)	24	SKT	NAA		CGI	16.9
[37]	ICD-10	AAMI	Placebo(44)	82.5 (5.8)	18		18.7 (4.6)						8.3
Schneider et al.,	DSM-IV	AD	240 mg daily (170)	78.1 (7.0)	44	Mild to moderate	17.9 (4.0)	26	ADAS-cog	GERRI	-	CGIC	17.6
[38] N	NINCDS/ADRDA		120 mg daily (169)	78.6 (7.0)	50	101	18.2 (4.1)						20.1
	CONTRACTOR CONTRACTOR AND CONTRACTOR		Placebo (174)	77.5 (7.4)	48	/ /	18.2 (4.1)						22.4
		AD with NP	S 240 mg daily (42)	79.3 (6.6)	33	Mild to moderate	17.4 (3.8)	26	ADAS-cog	-	-	CGIC	-
			120 mg daily (51)	79.6 (7.3)	37	7	17.9 (4.5)						-
			Placebo (47)	77.2 (7.8)	32		17,6 (3.9)						_
Napryeyenko et al.	, NINCDS/ADRDA	AD or VaD	240 mg daily (198)	65 (8)	28	Mild to moderate	14-25	22	SKT	GBS-ADI	. NPI	GBS	2.0
[39, 45]	NINDS/AIREN	with NPS	Placebo (197)	63 (8)	28		14-25	ha					2.5
ACCOUNT NO.		Only AD	240 mg daily (104)	66 (8)	33	Mild to moderate	14-25	22	SKT	GBS-ADI	. NPI	GBS	1.9
		with NPS	Placebo (110)	64 (8)	29		14-25						3.6
Ihl et al.,	NINCDS/ADRDA	AD or VaD	240 mg daily (202)	65 (10)	31	Mild to moderate	14-25	24	SKT	ADL-IS	NPI	CGIC	7.9
[19, 44]	NINDS/AIREN	with NPS	Placebo (202)	65 (9)	34		14-25						5.9
R 100 (D)		Only AD	240 mg daily (163)	64.9 (9.5)	33	Mild to moderate	14-25	24	SKT	ADL-IS	NPI	CGIC	-
		with NPS	Placebo (170)	64.2 (8.7)	35		14-25			And Ann			_
Herrschaft et al.,	NINCDS/ADRDA	AD or VaD	240 mg daily (200)	65.1 (8.8)	31	Mild to moderate	14-25	24	SKT	ADL-IS	NPI	CGIC	3.4
[18]	NINDS/AIREN	with NPS	Placebo (202)	64.9 (9.4)	31		14-25			9 9	8	7500	2.4
Gavrilova et al.,	International	aMCI with	240 mg daily (80)	65 (7)	28	Mild	25.6 (1.3)	24	TMT	- 1	NPI	CGL	2.5
[21]	consensus criteria*	NPS	Placebo (79)	63 (7)	16		25.7 (1.5)					1.7	3.8

AAMI, age-associated memory impairment; AD, Alzheimer's disease; ADAS-cog, Alzheimer's Disease (AD) Assessment Scale; cognitive subscale; ADL-IS, Alzheimer's Disease Activities-of-Daily-Living International Scale; CGI, Clinical Global Impression; CGIC, Clinical Global Impression of Change; GBS-ADL, Gottries-Brāne-Steen-Activities of daily living scale; GERRI, Geriatric Evaluation by Relative's Rating Instrument, MMSE, Mini-Mental State Examination; NAA, Numberger Alters-Alltagsaktivitäten-Skala; NAB, Numberger-Alters-Beo-bachtungs-Skala; NPI, Neuropsychiatric Inventory; NPS, neuropsychiatric symptoms; SKT, Syndrom-Kurz test; TMT, Trail-Making Test; VaD, vascular dementia. *Criteria proposed by Winblad et al. [27]. – Not available.


Cognition outcome: EGb 761 vs. placebo

Cognition outcome: EGb 761 vs. placebo Subgroup with neuropsychiatric symptoms

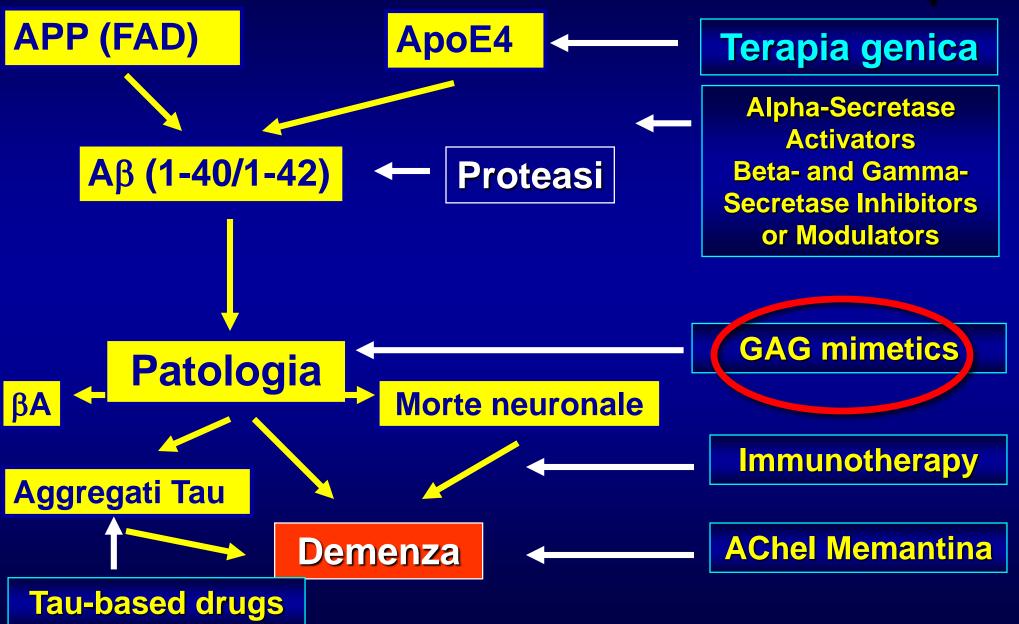
Cognition outcome: EGb 761 vs. placebo Subgroup with Alzheimer's disease

Gingko biloba for cognitive impairment and dementia

Treatment effects of EGb 761 on 2,561 patients with cognitive impairment and dementia from 9 RCTs with a duration of 22 to 26 weeks showed the overall benefits of EGb 761 for stabilizing or slowing decline in cognition, function, behavior, and clinical global change of subjects with cognitive impairment and dementia

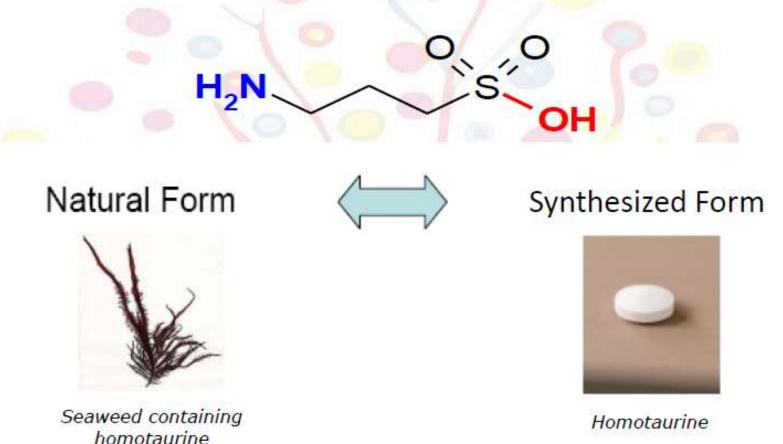
Subgroup analyses revealed the differences in effects of different doses, although all these clinical benefits of EGb 761 were mainly associated with the 240 mg/day dose. In AD subgroup analysis, the advantage of EGb 761 compared to placebo was similar to that obtained on the whole group

Gingko biloba for cognitive impairment and dementia


EGb 761 showed pooled benefits at a dose of 240 mg/day in improving cognition, functional status and clinical global change, and NPS in the treatment of dementia, AD, and MCI patients with also NPS

The safety and tolerability of EGb761 appeared to be excellent at different doses, with only few and minor adverse events perfectly balanced between EGb 761 and placebo, which were in line with findings from previous meta-analyses and long-standing clinical experience

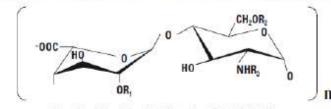
Principal nutraceuticals and bioactive compounds for the treatment of AD and late-life cognitive disorders


Groups	Subgroups	Molecules			
Antioxidant vitamins		Vitamins A, C, and E			
Homocysteine-related vitamins		Vitamins B6, B12, and B9			
Flavonoids	Flavanols	Catechin, epicatechin, epigallocathechin, and epigallocatechingallate (EGCG)			
	Flavonols	Quercetin and kaempferol			
	Flavones	Luteolin and apigenin			
	Isoflavones	Daidzein and genistein			
	Flavanones	Esperetin and naringenin			
	Anthocyanidins	Pelargonidin, cyanidine, and malvidin			
Non-flavonoid polyphenols		Resveratrol and curcumin			
Carotenoids		Lutein, lycopene, and β-carotene			
Diterpenes		Carnosic acid and rosmarinic acid			

RIDUZIONE DELLA CONCENTRAZIONE E DEPOSITO EXTRACELLULARE DELLA Aβ

Homotaurine: Structure and Mechanisms of Action

Homotaurine Naturally Found in Seaweeds


Forma sintetica vs molecola d'estrazione:

- Identica chimicamente
- Stessa attività biologica

Homotaurine: Structure and Mechanisms of Action

Glycosaminoglycans accelerate amyloid aggregation

 $R_1 = SO_3^-/H$ $R_2 = SO_3^-/H$ $R_2 = SO_3^-/H/COOH_3$

Amyloid Precursor Protein (brain)

† Amyloid Aβ

Amyloid fibril —Amyloid plaque

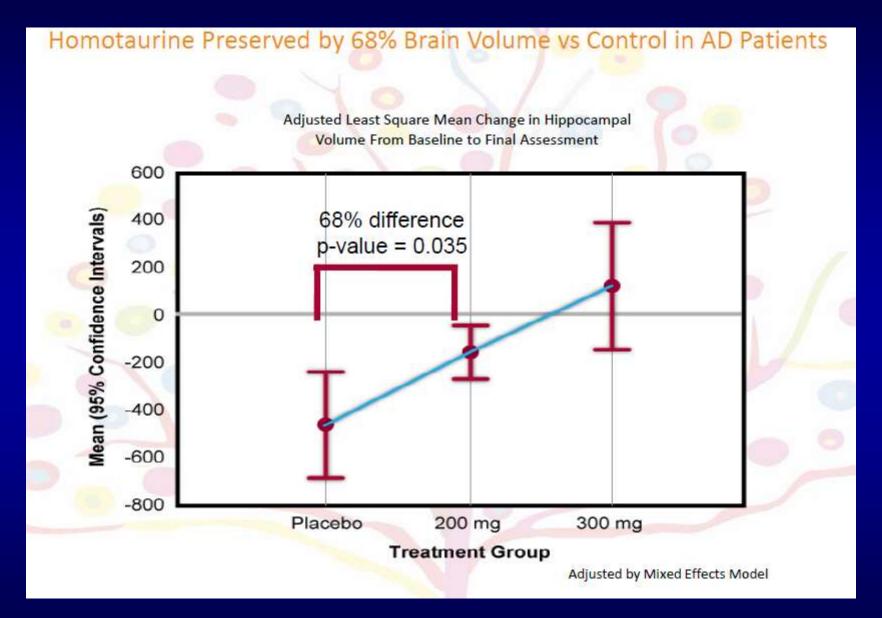
Homotaurine

L'omotaurina inibisce la formazione in vitro delle fibrille di amiloide

Amyloid A6 Amylo

24-hour incubation

Amyloid AB + homotaurine


Neurotoxicity

Brain cell damage/death

Brain volume loss

Memory Loss & Cognitive Decline

Homotaurine: Volumetric MRI in AD

Effects of Homotaurine on Specific Types of Cognitive Performance

ADAS-cog subtest	Change in scores in 1 yr (100 mg homotaurine vs placebo)	Conclusion		
Remembering Test Instructions	66.7% better*	<u>Preserves</u> memory		
Language Comprehension	38.9% better	<u>Maintains</u> verbal skills and comprehension ability		
Spoken Language Ability	40.0% better			
Ideational Praxis 33.0% better		Supports planning & execution of tasks		

Saumier et al. J Nutr Health Aging 2009;13:808-812

Principal nutraceuticals and bioactive compounds for the treatment of AD and late-life cognitive disorders

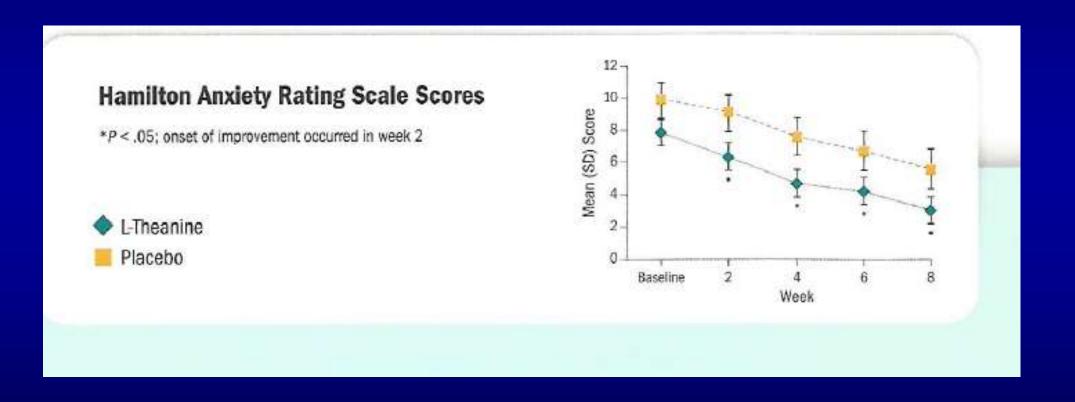
Groups	Subgroups	Molecules			
Antioxidant vitamins	1454 110-	Vitamins A, C, and E			
Homocysteine-related vitamine		Vitamins B6, B12, and B9			
Flavonoids	Flavanols	Catechin, epicatechin, epigallocathechin, ar epigallocatechingallate (EGCG)			
	Piavonois	Quercetin and kaempferol			
	Flavones	Luteolin and apigenin			
	Isoflavones	Daidzein and genistein			
	Flavanones	Esperetin and naringenin			
	Anthocyanidins	Pelargonidin, cyanidine, and malvidin			
Non-flavonoid polyphenols		Resveratrol and curcumin			
Carotenoids		Lutein, lycopene, and β-carotene			
Diterpenes		Carnosic acid and rosmarinic acid			

L-theanine: Potential Neurobiological Effects

Neurobiological effects of the green tea constituent theanine and its potential role in the treatment of psychiatric and neurodegenerative disorders

Anne L. Lardner

St Vincents University Hospital, Elm Park, Dublin 4, Ireland


COFFEE, TEA, AND CAFFEINE CONSUMPTION AND PREVENTION OF LATE-LIFE COGNITIVE DECLINE AND DEMENTIA: A SYSTEMATIC REVIEW

F. PANZA^{1,2,3}, V. SOLFRIZZI⁴, M.R. BARULLI^{1,2}, C. BONFIGLIO⁵, V. GUERRA⁶, A. OSELLA⁵, D. SERIPA³, C. SABBÀ⁴, A. PILOTTO^{3,7}, G. LOGROSCINO^{1,2}

1. Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy; 2. Department of Clinical Research in Neurology, University of Bari Aldo Moro, "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy; 3. Geriatric Unit and Gerontology-Geriatrics Research Laboratory, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy; 4. Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari Aldo Moro, Bari, Italy; 5. Laboratory of Epidemiology and Biostatistics, National Institute for Digestive Diseases, IRCCS «Saverio de Bellis», Castellana, Bari, Italy; 6. Trials Centre, National Institute for Digestive Diseases, IRCCS «Saverio de Bellis», Castellana, Bari, Italy; 7. Geriatric Unit, Azienda ULSS16 Padova, S. Antonio Hospital, Padova, Italy. Corresponding author: Francesco Panza, MD, PhD, Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy and Department of Clinical Research in Neurology, University of Bari Aldo Moro, "Pia Fondazione Cardinale G. Panico", Tricase, Lecce, Italy, Email: geriat.dot@geriatria.uniba.it

J Nutr Health Aging 2015;19:313-328

L-theanine relieves positive, activation, and anxiety symptoms in patients with schizophrenia and schizoaffective disorder: an 8-week, randomized, double-blind, placebo-controlled, 2-center study

